作者: admin

  • 学术论文 | Otariidae-Inspired Soft-Robotic Supernumerary Flippers by Fabric Kirigami and Origami

    https://doi.org/10.1109/TMECH.2020.3045476

    Abstract:

    Wearable robotic devices are receiving rapidly growing attentions for human-centered scenarios from medical, rehabilitation, to industrial applications. Supernumerary robotic limbs have been widely investigated for the augmentation of human limb functions, both as fingers and manipulator arms. Soft robotics offers an alternative approach to conventional motor-driven robot limbs toward safer and lighter systems, while pioneering soft supernumerary limbs are strongly limited in payload and dexterity by the soft robotic design approach, as well as the fabrication techniques. In this article, we proposed a wearable supernumerary soft robot for the human forearm, inspired by the fore flippers of otariids (eared seals). A flat flipper design was adopted, differing from the finger- or arm-shaped state-of-the-art works, with multiple soft actuators embedded as different joints for manipulation dexterity. The soft actuators were designed following origami (paper folding) patterns, reinforced by kirigami (paper cutting) fabrics. With this new approach, the proposed soft flipper incorporated eight independent muscles, achieving over 20 times payload to self-weight ratio, while weighing less than 500 g. The versatility, dexterity, and payload capability were experimentally demonstrated using a fabricated prototype with proprietary actuation and control. This article demonstrates the feasibility and unique advantages of origami + kirigami soft robots as a new approach to strong, dexterous, and yet safe and lightweight wearable robotic devices.

  • 学术论文 | 3D Printed Multi-Cavity Soft Actuator with Integrated Motion and Sensing Functionalities via Bio-Inspired Interweaving Foldable Endomysium

    学术论文 | 3D Printed Multi-Cavity Soft Actuator with Integrated Motion and Sensing Functionalities via Bio-Inspired Interweaving Foldable Endomysium

    https://doi.org/10.1002/advs.202409060

    Abstract

    The human muscle bundle generates versatile movements with synchronous neurosensory, enabling human to undertake complex tasks, which inspires researches into functional integration of motions and sensing in actuators for robots. Although soft actuators have developed diverse motion capabilities utilizing the inherent compliance, the simultaneous-sensing approaches typically involve adding sensing components or embedding certain-signal-field substrates, resulting in structural complexity and discrepant deformations between the actuation parts with high-dimensional motions and the sensing parts with heterogeneous stiffnesses. Inspired by the muscle-bundle multifiber mechanism, a multicavity functional integration (McFI) approach is proposed for soft pneumatic actuators to simultaneously realize multidimensional motions and sensing by separating and coordinating active and passive cavities. A bio-inspired interweaving foldable endomysium (BIFE) is introduced to construct and reinforce the multicavity chamber with optimized purposive foldability, enabling 3D printing single-material fabrication. Performing elongation, contraction, and bidirectional bending, the McFI actuator senses its spatial position, orientation, and axial force, based on the kinematic and sensing models built on multi-cavity pressures. Two McFI-actuator-driven robots are built: a soft crawling robot with path reconstruction and a narrow-maneuverable soft gripper with object exteroception, validating the practicality in stand-alone use of the actuator and the potential for intelligent soft robotic innovation of the McFI approach.